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Abstract— To realize natural and fast bipedal walking, we
mimic the ZMP trajectory from human walking data based
on the concept of Divergent Component of Motion (DCM).
This paper presents an omnidirectional gait generator that is
lightweight and universal. In addition, we integrate DCM track-
ing and foot placement adjustment into our control framework
to ensure a stable walking motion and push recovery. The
method proposed was validated in RoboCup2018 AdultSize
soccer competition, where our robot WALKER+ walked on
grass field and kept balance after the push from other robots.

I. INTRODUCTION

Humanoid robots are built to live and play with people
in the near future, especially in environments designed for
humans. The locomotion of bipedal robot is a complicated
problem for scientists and engineers. One of the most popular
concepts in online gait generation is to simplify the robot as
a reduced order model, such as Spring Loaded Inverted Pen-
dulum (SLIP) [1] and Linear Inverted Pendulum (LIP) [2].
However, for those position controlled robot, zero moment
point (ZMP) [3] is an important criteria, thus ZMP based
LIP is much commonly used in planning to reduce the time
of optimization with full-dynamics model. Kajita proposes
the widely used preview control [4] method and Spatially
Quantized Dynamics (SQD) [5] based pattern generator.
Wieber et al. presents a model predictive controller (MPC)
and quadratic programming based gait generator [6]. Tedrake
propose a closed-form planner based on polynomial ZMP
reference using linear quadratic regulator (LQR) [7].

Recently, people have a better understanding of the LIP
by splitting its motion into two components. One part called
Divergent Component of Motion (DCM) simplifies the LIP
model into two orthogonal dynamics, where only the diver-
gent component should be considered. DCM is firstly used in
push recovery [8] (another name ’Capture Point’ [9] is more
famous in this problem), and then it is used in gait generator
and controller by Takenaka [10]. Englsberger extends its
concept into 3D and has a great contribution to the DCM
based gait control method [11]. Hopkins et al. do a lot of
work in time-varying DCM [12].

Based on DCM, push recovery in walking can be solved in
many ways [13], [14]. Khadiv simplifies the nonlinear step-
timing optimization with foot location at the same time [15].
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Fig. 1: Left: DCM dynamics on robot WALKER+.
Right: Human walking experiment

Griffin utilizes QP to compute desired location when large
disturbance occurs [16]. Jeong presents a CP feedback based
walking stabilization [17]. Kamioka et al. simultaneously
optimize the ZMP and footstep using analytical solution [18].

Most position controlled robots utilize impendance control
using force torque sensors feedback, due to the fact that
the required force in the dynamic model (LIP) can not
be produced directly. Therefore, the gait generator is more
important for those position controlled robot as a feed
forward input. In the 1v1 competition at the RoboCup, real-
time gait replanning is required, which means MPC based
gait generation is too complicated. In this paper, we propose
a polynomial spline based DCM generator using arbitrary
ZMP key frame input, which includes the desired ZMP
high-order derivative information. We also collect the human
walking data to find the ZMP pattern and mimic the actions
of human on our robot. At last, we present the control
framework integrating DCM tracking controller and foot
placement adjustment.

This paper is organized as follows: In section II: we review
the dynamics of DCM and its features. The polynomial spline
based DCM and ZMP generator and controller is given then.
In section III: we introduce the ZMP mimicking system we
use and shows the ZMP trajectory’s feature. The walking
disturbance stabilizer is presented in section IV. Section V
shows the simulation and the hardware experiment results.
Finally, we give a conclusion and suggest future work in
section VI.
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II. LIP BASED DCM GENERATOR AND CONTROLLER

A. Linear Inverted Pendulum and motion components

In this section, we briefly summrize some properties of
3D-LIP and its two motion components. To linearlize the
Inverted Pendulum’s dynamics, Kajita utilizes a constant
height constraint [4], and based on it, Englsberger presents
the Virtual Repellent Point (VRP) eliminating the effects of
gravity in the nonlinear dynamics [11].

The key point in the LIP is to establish a linear mapping
from the vector of distance to the vector of acceleration by

ẍ = ω2(x− rvrp) (1)

where x = [xcom, ycom, zcom]T is the center of mass
(CoM) position, and rvrp = [xvrp, yvrp, zvrp]T is the posi-
tion vector of VRP. The scalar of the mapping is denoted
by ω2 = g/∆z, and the enhanced Centroidal Moment
Pivot (eCMP) is located directly below the VRP, satisfying
recmp = rvrp − [0, 0,∆z]T .

Rewrite the dynamics of LIP using state equation, a
linear state transformation can be found in the process of
eigenvector decomposition [8], [18]. And the mean vector of
the two new independent basis vectors equals to CoM.[

ξDCM

ξCCM

]
=

[
x+ ẋ/ω
x− ẋ/ω

]
(2)

The decoupled dynamics (3) shows that the motion of LIP
(x) has two orthogonal components, ξDCM is unstable and
diverging away from the rvrp, but another component ξCCM

convergents to the rvrp.

d

dt

[
ξDCM

ξCCM

]
=

[
ω 0
0 −ω

] [
ξDCM

ξCCM

]
+

[
−ω
ω

]
rvrp

(3)
Therefore, if the unstable part (ξDCM ) is undercontrolled

by moving VRP, whole motion of the CoM can be easily
achieved. Englsberger explains this idea using serial decom-
position, that VRP pushes away the DCM, but CoM follows
the DCM [11].

B. Weighted ZMP Smoother

It is well known that rZMP = [px, py]T can be calculated
in the Inverted Pendulum model (take px for example).

px = xcom −
zcom

z̈com + g
ẍcom (4)

To set the relationship between ZMP and VRP, we can
define a weight ratio ρ(t) to recalculate rZMP in Fig. 1,
which satisfies rZMP = ρ(t)x + (1 − ρ(t))recmp, and
ρ(t) can be solved according to the proportional relationship
along the vertical green and blue line (pz = zground).

px = ρ(xcom − xvrp) + xvrp

ρ(t) =
zvrp −∆z − zground
zvrp −∆z − zcom

(5)

It is a normal case that zvrp−∆z 6= zground → ρ(t) 6= 0,
which means we can realize a Heel-to-Toe ZMP trajectory
while the rvrp trajectory remaining fixed in each step.

The supporting area is important for the ZMP based
walking generator: for the robot with narrow feet, constant
CoM’s Height with ρ = 0 is more common, but for our big-
foot robot WALKER+, we allow ρ(t) ∈ [0, 1) to make the
rZMP moves in the front of the projection of the VRP.

On the other hand, the drastic change of ZMP in Double
Support Phase (DSP) will make it hard to minimize its
tracking error. Using preview control is a good way to
generate a smoother ZMP trajectory [4], but tuning the ρ(t)
is a much easier way to do it.

C. Generation of DCM and ZMP

There are many works on ZMP based CoM generation
for bipedal robots, some are LQR and preview control based
and need more computation [4], [6], [7]. Recently DCM
based trajectory simplifies the calculation using piecewise
polynomial DCM and ZMP [19], [18].

In our omnidirectional gait generator, we define foot-
center point as the middle of two feet while robot
standing. Then we generate the position and orienta-
tion of footprint in next N steps by command message
[∆Lforward,∆Lside,∆θ] compatible with speed mode.

Center[i]

FootPrint[i]

Center[i+1]

FootPrint[i+1]

Fig. 2: Footprint Generation

To realize a simple planning, we use a polynomial spline
to interpolate ki DCM points each step period from current
state to a virtual final state after N steps. The idea of the key
DCM point is from the Heel-to-Toe DCM planning in [11].

Here we explain the relationship in continuity between
DCM and ZMP in our method. From equation (3), we can
derive (ξDCM is denoted by ξ and rvrp is denoted by v) .

v = ξ − 1

ω
ξ̇ (6)

If we use polynomial spline to connect two states, the VRP
will keep continuous except for the start and the end of tran-
sition in high-order level. We denote vector [ξ, ξ̇, ..., ξ(m)]
as Ξ[m], and the subscript of Ξ[m] indicates the order
of the footprints. Thus Ξ

[m]
i−1 and Ξ

[m]
i can determine the

polynomial order as (2m+ 1) between footprint i−1 and i.
As the state Ξ

[m]
i is used in two polynomials that Ξ

[m]
i−1 →

Ξ
[m]
i and Ξ

[m]
i → Ξ

[m]
i+1, we denote the vector [v, v̇, ...,v(m)]

as V , then Vi can be calculated using Ξ
[m]
i with polynomial
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parameters. The continuity from v to v(m−1) is guaranteed
between two transitions, only the v(m) is not continuous.

Actually, we cannot select the Ξ[m] easily without the help
of the VRP, which can be generated much more directly from
the footprints.

We define ti,j as the time duration of DCM transition
from (j − 1)

th key point Ξ
[m]
i,j−1 to jth point Ξ

[m]
i,j in the ith

step. (i = 1, 2, ..., N, j = 1, 2, ..., ki). We initialize these key
DCM point using discrete input vrpi,j based on backward
iteration [11]. We can get some broken lines connected by
ξi,j , the time duration Ti,j from ξi,j → ξi,j+1 can be
calculated as follows, αi,j are weight parameters.

Ti,j =

{
(1− αi,j)ti,j +αi,j+1ti,j+1, 1 ≤ j < ki

(1− αi,j)ti,j +αi+1,1ti+1,1, j = ki
(7)
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Fig. 3: DCM and VRP Generation

After the backward iteration, we suppose VRP is const
first so as to use

ξ(t) = (ξ(0)− v(0))eωt + v(0) (8)

to calculate a reference DCM position (the first variable
in the vector Ξ

[m]
i,j ).

Ξ
(0)
i,j = (ξi,j − vi,j)eωTi,j + vi,j (9)

Then we differentiate on both sides of the equation (3) for
(m− 1) times.

ξ(1) = ω(ξ − v)

ξ(2) = ω(ξ(1) − v(1))

...

ξ(m) = ω(ξ(m−1) − v(m−1))

(10)

The DCM key point vector Ξ[m] is determined by current
DCM position and V [m−1], which means we can set the
feature of VRP trajectory as we want using its higher
derivative information.

The formulation during ith step from Ξi−1,ki
(Ξi,0) to

Ξi,ki(Ξi+1,0) can be defined by piecewise polynomial:

ξi(t) =

kj∑
j=1

hj(t)

2m+1∑
s=0

βj,st
s,

hj(t) =

 1,

j−1∑
s=1

ti,s ≤ t <
j∑

s=1

ti,s

0, else

(11)

where βj,s are polynomial parameters.
Then we can draw DCM and VRP trajectory in Fig. 3,

according to equation (6).
Due to the fact that CoM follows the DCM trajectory, with

a stable first-order dynamics:

ẋ = −ω(x− ξ) (12)

We can obtain a CoM’s iterative expression where ∆t is
the control period of the gait:

x(t+ ∆t) = e−ω∆t (x(t)− ξ(t)) + ξ(t) (13)

Note: a) The difference between Englsberger’s [19] and
our method is that we consider all derivatives of rvrp
in non-zero conditions, therefore we can generate a much
smoother trajectory for both ZMP and CoM. b) We choose
the polynomial order as 5, and two key VRP&DCM points
in 2nd step in Fig.3. But in the following experiment shown
in this paper, we choose each degree of the polynomial as
3, and the number of key points for one step equals to 4 in
whole step period (DSP and SSP).

D. ZMP and DCM controller

We utilize DCM tracking controller and position-based
ZMP controller in our system. The control law used in DCM
tracking is:

vdes = vref + (1 +
Kp

ω
)ξerr +Kd(ξ̇err)

ξerr = ξest − ξref
(14)

And the position-based ZMP stabilizer use the law:

ẍdes = kfω
2 (vest − vdes) + ẍref (15)

VRP can be estimate by equation (5):

vx,est =
1

1− ρ(t)
(px − ρ(t)xx,est)

vy,est =
1

1− ρ(t)
(py − ρ(t)xy,est)

vz,est = ∆z +
1

1− ρ(t)
(zground − ρ(t)xz,est)

(16)

The whole control system we use will be explained in
section V.
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III. MIMICKING HUMAN ZMP TRAJECTORY

One of the main ideas of this paper is to design desired
ZMP trajectories mimicking human walking data. We have
proposed a polynomial spline based gait generator in section
II. In this section, we will briefly introduce the process of
extracting human ZMP data and mimicking walking pattern
of human. Harada did some similar job in HRP-4C [20].

ATI-Mini58 EtherCAT-Master

Fig. 4: ZMP Capture Device

We use the same 6-axis force-torque sensors as those
on the robot, including the same sole structure. Ten fixed
footprints are drawn on the floor in advance, while the
participants only need to wear the special shoes to walk along
the preplanned path. Meanwhile, another motion capture
system is used to capture the swing foot trajectory, which
is not modeled in reduced-order model we utilize.
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Fig. 5: Human Walking ZMP Stream
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Fig. 6: ZMP Trajectory and Key Frame

Fig. 5 and Fig. 6 shows the pattern of human walking after
data processing (scaling and intercepting). The dark red line
is the average ZMP data from 9 experiments. And the light
pink lines represent the origin data, the pattern of ZMP x

and ZMP y is significant in the Fig. 6.
We decided to use the filterd ZMP data to get the key

frame directly, for we just use the v,v(1), ...,v(m−1) in gait
planning to achieve a similar ZMP trajectory in Fig. 3.

IV. WALKING DISTURBANCE STABILIZER

We already have the DCM tracking controller and ZMP
stabilizer, but robot still falls when being pushed or walking
on uneven terrain. Thus we propose a stabilizer to replanning
DCM and adjust the posture of the landing foot.

A. DCM Replanning

Considering the heavy legs our robot has, step adjustment
cannot be so fast. We add an offset on the location of
footprints at the end of each step, through that we can affect
the planning of VRP and DCM directly.

∆xfootprint = ξest,T − ξref,T (17)

The modification can be observed in Fig. 7, the robot is
stepping in place when being pushed in one direction, and
the periodic trajectories of VRP and DCM move in next step
to adapt that push.

Fig. 7: Gait Replanning

B. Foot Landing Stabilizer

In order to reduce the impact of the landing, we add
admittance control into the ankle joint, and we also change
the swing foot trajectory 10 times a step by adjusting the
desired landing posture.

We define a transform function used as a weight ratio
between old and new spline trajectory.

xswing(t) = xold(t) (1− ftran(t′)) + xnew(t)ftran(t′)

ftran(t′) = 6t′
5 − 15t′

4
+ 10t′

3

t′ =
t− t0
t1 − t0

, t0 ≤ t ≤ t1
(18)

The landing posture is adjusted according to [21], we
extended its method by adding sagittal adjustment. Assume
that the stance foot must have at least one point connected to
the ground, and the error of the joint angle is small enough,
then we can estimate the posture of the stance foot through
IMU data and forward kinematics.

We use a Motion Capture based swing foot posture (posi-
tion and pose) trajectory generater to get a new polynomial
function xnew(t). Finally, the desired swing foot trajectory
is calculated by equation (18).
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Fig. 8: Overall Control System of WALKER+

V. EXPERIMENT RESULTS

To evaluate the proposed human-like gait generator and
walking stabilizer, we performed numerous simulations of
the humanoid robot WALKER+ in Simscape of MATLAB,
the hardware experiments were conducted on the 50kg robot
with real-time control system for the RoboCup competition
games [22].

A. DCM Tracking Simulation

Fig. 9 shows two step response with different PD parame-
ters for DCM tracking system (14) in MATLAB simulation.
The desired DCM shifts to 0.06m in y direction at 0.0s in
simulation time, after 5.0s it shifts to zero back. The response
time of lower P gain group is 0.9s, and another group
with higher P gain achieves the desired DCM in 0.4s, but
there seems to be more oscillation. Therefore, setting a high
proportional gain properly in the DCM tracking controller
can improve the response rate of whole gait controller.

Fig. 9: DCM tracking Simulation

In this paper, we set Kp = 2000,Kd = 50 in simulation
and Kp = 500,Kd = 20 in the hardware experiment to track
the DCM of the robot.

B. Human-like Walking with Control

As a result of using human walking data to design a
proper VRP key frame, we realize a stable walking with large
steps both in simulation and hardware. The leg length of our
robot is about 0.7m and the footprint length is 0.22m, we
achieve 0.6m/step in simulation and 0.4m/step on hardware

experiment, with Tstep = 1.1s,DSP = 25%. Fig. 10 shows
the snapshot of walking in 4 fps.

We have tried Heel-to-Toe (HT) strategy in our gait
generator to extend the step length, but we soon find that
a long distance of HT will affect the performance of DCM
tracking. In Fig. 6, we also find the distance of HT is not
significant in SSP. The DSP of Human data is about 40%,
and the range of HT is ∆X = 0.07m,∆Y = 0.03m.

In Fig. 10, the robot ZMP planner successfully imitates the
walking of human, what’s more, in the 1-vs-1 soccer game
at the RoboCup, the real-time human-like gait generator and
walking stabilizer played an important role in the process of
our robot winning the 3rd place.

Fig. 10: Hardware experiment snapshot of walking

C. Push Recovery

The overall control system in Fig. 8 can break down the
impact into several parts: a) When large disturbance happens,
robot will adjust the previewed footprints to replan the gait
according to ∆ξ before a new step period. b) DCM tracking
controller will compensate the error caused by reduced order
model and joint position lag. c) For our robot is position
controlled, impendance control and swing foot adjustment
are used to decrease the impact of foot landing and upper
body inclination.

In Fig. 7, our robot can resist the impact of 140N × 0.1s.
And the hardware test in the RoboCup Technical Challenge
shows the robot can keep stepping after being hit by a 3Kg
bag released from a 0.9m height circular orbit.
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VI. CONCLUSION

A. HT like Human

One of the main contributions in this paper is to build a
complete human-like gait generation and control system for
bipedal robot based on Divergent Component of Motion. As
long as the VRP key point position and desired high-order
derivatives are designed, we can generate DCM and CoM
trajectories through VRP key points in closed form.

The Heel-to-Toe strategy can not be used arbitrarily to
extend the step length, therefore mimicking the human’s
ZMP data is effective in our polynomial spline based method.

B. Walking Stabilizer on Grass Field

Our robot had an excellent performance in RoboCup 2018
Competetion, it overcame the odds (soft grass field, other
robot pushing and long time walking) and behaved like a
real strong man when shooting and blocking the ball. The
walking stabilizer is the key for the robot to keep balance
when disturbance occurs.

C. Future Work

• We currently use the human data of ZMP directly,
for the dataset is quite small. We will continue to
collect human walking data and build an open source
project. What we want to learn is the number of patterns
during human walking with robot feet. The final goal
is to realize an online walking learning on the dynamic
features like ZMP or GRF.

• The proposed method is actually a 3-D gait generation,
thus we will try to mimicking human climbing stairs
in the near future. However, walk upstairs dynamically
requires more torque output for the joint, on the one
hand, more powerful joint unit is being designed, on
the other hand, straight-knee walking and climbing
algorithm should be considered.

ACKNOWLEDGMENT

The authors want to thank the UBTECH’s staff from
Beijing Research Institute for providing the humanoid robot
WALKER+, which is real-time controlled using EtherCAT
communication protocol at 1kHz.

This work was partially supported by UBTECH Robotics,
Inc. and Tsinghua University.

We are also grateful to the anonymous reviewers for their
detailed suggestions.

REFERENCES

[1] R. Blickhan, “The spring-mass model for running and hopping,”
Journal of biomechanics, vol. 22, no. 11-12, pp. 1217–1227, 1989.

[2] S. Kajita and K. Tani, “Study of dynamic biped locomotion on
rugged terrain-derivation and application of the linear inverted pen-
dulum mode,” in Proceedings. 1991 IEEE International Conference
on Robotics and Automation. IEEE, 1991, pp. 1405–1411.

[3] M. Vukobratovic and D. Juricic, “Contribution to the synthesis of
biped gait,” IEEE Transactions on Biomedical Engineering, no. 1, pp.
1–6, 1969.

[4] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in ICRA, vol. 3, 2003, pp. 1620–1626.

[5] S. Kajita, M. Benallegue, R. Cisneros, T. Sakaguchi, S. Nakaoka,
M. Morisawa, K. Kaneko, and F. Kanehiro, “Biped walking pattern
generation based on spatially quantized dynamics,” in Humanoid
Robotics (Humanoids), 2017 IEEE-RAS 17th International Conference
on. IEEE, 2017, pp. 599–605.

[6] P.-b. Wieber, “Trajectory free linear model predictive control for stable
walking in the presence of strong perturbations,” in Humanoid Robots,
2006 6th IEEE-RAS International Conference on. IEEE, 2006, pp.
137–142.

[7] R. Tedrake, S. Kuindersma, R. Deits, and K. Miura, “A closed-form
solution for real-time zmp gait generation and feedback stabilization,”
in Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th International
Conference on. IEEE, 2015, pp. 936–940.

[8] T. Koolen, T. De Boer, J. Rebula, A. Goswami, and J. Pratt,
“Capturability-based analysis and control of legged locomotion, part 1:
Theory and application to three simple gait models,” The International
Journal of Robotics Research, vol. 31, no. 9, pp. 1094–1113, 2012.

[9] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A
step toward humanoid push recovery,” in Humanoid Robots, 2006 6th
IEEE-RAS International Conference on. IEEE, 2006, pp. 200–207.

[10] T. Takenaka, T. Matsumoto, and T. Yoshiike, “Real time motion
generation and control for biped robot-1 st report: Walking gait pattern
generation,” in Intelligent Robots and Systems, 2009. IROS 2009.
IEEE/RSJ International Conference on. IEEE, 2009, pp. 1084–1091.

[11] J. Englsberger, C. Ott, and A. Albu-Schäffer, “Three-dimensional
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