
Modern Robotics: Mechanics, Planning, and Control
Code Library

Version 1.0.1

Huan Weng and Kevin M. Lynch
July 6, 2018

(beta version: January 14, 2017)

Introduction

This is the documentation for the code library accompanying Modern Robotics: Mechanics, Plan-
ning, and Control, by Kevin M. Lynch and Frank C. Park, Cambridge University Press, 2017,
http://modernrobotics.org. The code is written for MATLAB, Mathematica, and Python, and
originates from students’ solutions to programming assignments in courses using material from the
book. The current version of the code is largely the work of Huan Weng, based on contributions
from Bill Hunt, Jarvis Schultz, Mikhail Todes, Matthew Collins, Mojtaba Mozaffar, Chang Liu,
and Wentao Chen.

The code is commented and mostly self-explanatory in conjunction with the book. An example
use is provided with each function. The primary purpose of the software is to be easy to read and
educational, reinforcing the concepts in the book. The code is optimized neither for efficiency nor
robustness (it does not perform error-checking on its inputs). This is to keep the code as simple
and unintimidating as possible. Users are encouraged to use and modify the code however they
wish; the process of using and modifying the code certainly aids in understanding the concepts in
the book.

Information on installing and using the library is available at the code website, https://

github.com/NxRLab/ModernRobotics. Your feedback on bugs or documentation errors are appre-
ciated via the issue tracker at the same site.

This document provides an overview of the available functions using MATLAB syntax. Func-
tions are organized according to the relevant chapter in the book. Basic functions, such as functions
to calculate the magnitude of a vector, normalize a vector, test if a value is near zero, and perform
matrix operations such as multiplication and inverses, are not documented here.

Notation that is used throughout this document is summarized below.

Math Computer
symbol variable Description

R R 3× 3 rotation matrix in SO(3).
ω omg 3-vector angular velocity.
ω̂ omghat 3-vector unit rotation axis or unit angular velocity.
θ theta Angle of rotation about an axis or distance traveled along a screw

axis.
ω̂θ expc3 3-vector of exponential coordinates for rotation.
[ω], [ω̂θ] so3mat 3× 3 skew-symmetric so(3) representation of ω or ω̂θ.
p p 3-vector for a position in space.
T T 4× 4 transformation matrix in SE(3) corresponding to (R, p).
[AdT ] AdT 6× 6 matrix adjoint representation of T ∈ SE(3).
v v 3-vector linear velocity.
V V 6-vector twist (ω, v).

1

http://modernrobotics.org
https://github.com/NxRLab/ModernRobotics
https://github.com/NxRLab/ModernRobotics


S S A normalized 6-vector screw axis (ω, v), where (a) ‖ω‖ = 1 or (b)
‖ω‖ = 0 and ‖v‖ = 1.

Sθ expc6 6-vector of exponential coordinates for rigid-body motion.
[V], [Sθ] se3mat 4× 4 se(3) representation of V or Sθ.
M M End-effector configuration in SE(3) when manipulator is at its zero

position.
Bi Blist Bi is the screw axis of the ith joint expressed in the end-effector

frame when the manipulator is at the zero position. Blist is a list
of all the joint screw axes for the manipulator, i = 1, . . . , n.

Si Slist Si is the screw axis of the ith joint expressed in the space frame when
the manipulator is at the zero position. Slist is a list of all the joint
screw axes for the manipulator, i = 1, . . . , n.

Jb, Js Jb, Js The 6×n manipulator Jacobian for a robot with n joints, expressed
in the end-effector frame (Jb) or the space frame (Js).

εω eomg A small positive tolerance on the end-effector orientation error when
calculating numerical inverse kinematics.

εν ev A small positive tolerance on the end-effector linear position error
when calculating numerical inverse kinematics.

θ0 thetalist0 A list of joint variables that serve as an initial guess for the inverse
kinematics solution.

θi thetalist θi is the joint variable for joint i, and thetalist is θ = (θ1, . . . , θn).
thetamat An N ×n matrix where each row represents θ one timestep after the

row preceding it in the matrix.

θ̇i dthetalist θ̇i is the rate of change of joint variable i, and dthetalist is θ̇ =
(θ̇1, . . . , θ̇n).

dthetamat An N ×n matrix where each row represents θ̇ one timestep after the
row preceding it in the matrix.

θ̈i ddthetalist θ̈i is the acceleration of joint i, and ddthetalist is θ̈ = (θ̈1, . . . , θ̈n).

dthetamat An N ×n matrix where each row represents θ̈ one timestep after the
row preceding it in the matrix.

g g 3-vector for gravitational acceleration.
g̃ gtilde A possibly incorrect model for g used by a controller.
Mi−1,i Mlist Mi−1,i ∈ SE(3) is the configuration of manipulator link i relative

to link i − 1 when the manipulator is at its zero position. The link
frames are defined at the link centers of mass. Mlist is a list of all
Mi−1,i for i = 1, . . . , n + 1. The frame {n + 1} is the end-effector
frame, and it is fixed relative to the frame {n} of the last link. It
simply offers the opportunity to define an end-effector frame other
than at the center of mass of the last link.

Mtildelist A possibly incorrect model for Mlist used by a controller.
Ftip Ftip 6-vector wrench applied by the manipulator end-effector, expressed

in the end-effector frame {n+ 1}.
Ftipmat An N × 6 matrix where each row represents Ftip one timestep after

the row preceding it in the matrix.
Gi Glist Gi is the 6 × 6 spatial inertia matrix for link i of the manipulator,

and Glist is a list of all Gi for i = 1, . . . , n.
Gtildelist A possibly incorrect model for Glist used by a controller.

2



τi taulist τi is the generalized force applied at joint i, and taulist is the list
of all joint forces/torques τ = (τ1, . . . , τn).

taumat An N × n matrix where each row represents τ one timesetep after
the row preceding it in the matrix.

[adV ] adV 6 × 6 matrix adjoint representation of V ∈ se(3), used to calculate
the Lie bracket of two twists, [adV1 ]V2.

Tf Tf The total time of a motion in seconds from rest to rest when calcu-
lating trajectories.

∆t dt A timestep (e.g., between consecutive rows in a matrix representing
a trajectory or force history).

t t The current time.
θstart thetastart An n-vector of initial joint variables with which to start a trajectory.
θend thetaend An n-vector of final joint variables with which to end a trajectory.
Xstart Xstart An initial end-effector configuration Xstart ∈ SE(3) with which to

start a trajectory.
Xend Xend A final end-effector configuration Xend ∈ SE(3) with which to end a

trajectory.
eint eint An n-vector of the time-integral of joint errors.
θd thetalistd An n-vector of reference joint variables θd.

thetamatd An N × n matrix where each row represents θd one timestep after
the row preceding it in the matrix.

θ̇d dthetalistd An n-vector of reference joint velocities θ̇d.

dthetamatd An N × n matrix where each row represents θ̇d one timestep after
the row preceding it in the matrix.

θ̈d ddthetalistd An n-vector of reference joint accelerations θ̈d.

dthetamatd An N × n matrix where each row represents θ̈d one timestep after
the row preceding it in the matrix.

Kp Kp A scalar feedback proportional gain.
Ki Ki A scalar feedback integral gain.
Kd Kd A scalar feedback derivative gain.

intRes The number of integration steps during each timestep ∆t. The value
must be a positive integer. Larger values result in slower simulations
but less accumulation of integration error.

Chapter 3: Rigid-Body Motions

invR = RotInv(R)

Input:
R: Rotation matrix.

Output:
invR: The inverse of R.

For efficiency, the inverse is calculated as the transpose rather than a matrix inverse.

3



so3mat = VecToso3(omg)

Input:
omg: A 3-vector.

Output:
so3mat: The corresponding 3× 3 skew-symmetric matrix in so(3).

omg = so3ToVec(so3mat)

Input:
so3mat: A 3× 3 skew-symmetric matrix (an element of so(3)).

Output:
omg: The corresponding 3-vector.

[omghat,theta] = AxisAng3(expc3)

Input:
expc3: A 3-vector of exponential coordinates for rotation ω̂θ.

Output:
omghat: The corresponding unit rotation axis ω̂.

theta: The corresponding rotation angle θ.

R = MatrixExp3(so3mat)

Input:
so3mat: An so(3) representation of exponential coordinates for rotation, [ω̂θ].

Output:
R: The R′ ∈ SO(3) that is achieved by rotating about ω̂ by θ from an initial orientation R = I.

so3mat = MatrixLog3(R)

Input:
R: Rotation matrix.

Output:
so3mat: The corresponding so(3) representation of exponential coordinates.

d = DistanceToSO3(mat)

Input:
mat: A 3× 3 matrix M .

Output:

4



d: A measure of the distance from M to SO(3), the space of rotation matrices. If det(M) > 0
(the determinant of M should be 1 if M ∈ SO(3)), this distance is calculated as ‖MTM −
I‖F , since MTM should be the identity matrix if M ∈ SO(3). The Frobenius norm ‖ · ‖F
of a matrix is the square root of the sum of the squares of the absolute values of the
elements of the matrix. If the determinant is not positive, a large value is returned.

judge = TestIfSO3(mat)

Input:
mat: A 3× 3 matrix M .

Output:
judge: 1 (True) if M is a rotation matrix (an element of SO(3)) and 0 (False) otherwise. This

function calls DistanceToSO3(mat) and tests if the returned distance is smaller than a
small value (which you should feel free to change to suit your purposes).

R = ProjectToSO3(mat)

Input:
mat: A 3× 3 matrix M .

Output:
R: The closest rotation matrix (element of SO(3)) to M . This function is only appropriate for

matrices M that are “close” to SO(3). For example, M could be the result of a long series
of multiplications of rotation matrices, which has caused the result to drift slightly away
from satisfying the conditions of SO(3) (det(M) = 1,MTM = I) due to roundoff errors.

T = RpToTrans(R,p)

Input:
R: Rotation matrix.

p: A position p ∈ R3.
Output:

T: The corresponding homogeneous transformation matrix T ∈ SE(3).

[R,p] = TransToRp(T)

Input:
T: Transformation matrix.

Output:
R: The corresponding rotation matrix.

p: The corresponding position.

5



invT = TransInv(T)

Input:
T: Transformation matrix.

Output:
invT: Inverse of T.

Uses the structure of transformation matrices to avoid taking a matrix inverse, for efficiency.

se3mat = VecTose3(V)

Input:
V: A 6-vector (representing a twist, for example).

Output:
se3mat: The corresponding 4× 4 se(3) matrix.

V = se3ToVec(se3mat)

Input:
se3mat: A 4× 4 se(3) matrix.

Output:
V: The corresponding 6-vector.

AdT = Adjoint(T)

Input:
T: Transformation matrix.

Output:
AdT: The corresponding 6× 6 adjoint representation [AdT ].

S = ScrewToAxis(q,s,h)

Input:
q: A point q ∈ R3 lying on the screw axis.

s: A unit vector ŝ ∈ R3 in the direction of the screw axis.

h: The pitch h ∈ R (linear velocity divided by angular velocity) of the screw axis.
Output:

S: The corresponding normalized screw axis S = (ω, v).

[S,theta] = AxisAng6(expc6)

Input:

6



expc6: A 6-vector of exponential coordinates for rigid-body motion, Sθ.
Output:

S: The corresponding normalized screw axis S.

theta: The distance traveled along/about S.

T = MatrixExp6(se3mat)

Input:
se3mat: An se(3) representation of exponential coordinates for rigid-body motion, [Sθ].

Output:
T: The T ′ ∈ SE(3) that is achieved by traveling along/about the screw axis S a distance θ

from an initial configuration T = I.

se3mat = MatrixLog6(T)

Input:
T: Transformation matrix.

Output:
se3mat: The corresponding se(3) representation of exponential coordinates.

d = DistanceToSE3(mat)

Input:
mat: A 4× 4 matrix M .

Output:
d: A measure of the distance from M to SE(3), the space of transformation matrices. Let R be

the top-left 3× 3 submatrix of M , i.e., the portion of M expected to represent a rotation
matrix. If det(R) > 0 (the determinant of R should be 1 if R ∈ SO(3)), the distance is
calculated as ‖M ′ − I‖F , where the top-left 3× 3 submatrix of M ′ is RTR (which should
be the identity matrix if R ∈ SO(3)), the 1 × 4 bottom row of M ′ is the same as the
bottom row of M , and the elements M ′14, M

′
24, and M ′34 are zero. The Frobenius norm

‖ · ‖F of a matrix is the the square root of the sum of the squares of the absolute values
of the elements of the matrix. If the determinant of R is not positive, a large value is
returned.

judge = TestIfSE3(mat)

Input:
mat: A 4× 4 matrix M .

Output:
judge: 1 if M is a transformation matrix (an element of SE(3)) and 0 otherwise. This function

calls DistanceToSE3(mat) and tests if the returned distance is smaller than a small value
(which you should feel free to change to suit your purposes).

7



T = ProjectToSE3(mat)

Input:
mat: A 4× 4 matrix M .

Output:
T: The closest transformation matrix (element of SE(3)) to M . This function is only appro-

priate for matrices M that are “close” to SE(3). For example, M could be the result of
a long series of multiplications of transformation matrices, which has caused the result to
drift slightly away from satisfying the conditions of SE(3) (top-left 3× 3 submatrix is in
SO(3) and the bottom row is [0 0 0 1]) due to roundoff errors. The top-left 3×3 submatrix
of T is the SO(3) matrix closest to the top-left 3× 3 submatrix of M , the bottom row of
T is [0 0 0 1], and the elements T14, T24, and T34 are equivalent to the elements M14, M24,
and M34, respectively.

Chapter 4: Forward Kinematics

T = FKinBody(M,Blist,thetalist)

Input:
M: The home configuration of the end-effector.

Blist: The joint screw axes in the end-effector frame when the manipulator is at the home
position.

thetalist: A list of joint coordinate values.
Output:

T: The T ∈ SE(3) representing the end-effector frame when the joints are at the specified
coordinates.

T = FKinSpace(M,Slist,thetalist)

Input:
M: The home configuration of the end-effector.

Slist: The joint screw axes in the space frame when the manipulator is at the home position.

thetalist: A list of joint coordinate values.
Output:

T: The T ∈ SE(3) representing the end-effector frame when the joints are at the specified
coordinates.

Chapter 5: Velocity Kinematics and Statics

8



Jb = JacobianBody(Blist,thetalist)

Input:
Blist: The joint screw axes in the end-effector frame when the manipulator is at the home

position.

thetalist: A list of joint coordinate values.
Output:

Jb: The corresponding body Jacobian Jb(θ) ∈ R6×n.

Js = JacobianSpace(Slist,thetalist)

Input:
Slist: The joint screw axes in the space frame when the manipulator is at the home position.

thetalist: A list of joint coordinate values.
Output:

Js: The corresponding space Jacobian Js(θ) ∈ R6×n.

Chapter 6: Inverse Kinematics

[thetalist,success] = IKinBody(Blist,M,T,thetalist0,eomg,ev)

Input:
Blist: The joint screw axes in the end-effector frame when the manipulator is at the home

position.

M: The home configuration of the end-effector.

T: The desired end-effector configuration Tsd.

thetalist0: An initial guess θ0 ∈ Rn that is “close” to satisfying T (θ0) = Tsd.

eomg: A small positive tolerance on the end-effector orientation error. The returned joint
variables must give an end-effector orientation error less than εω.

ev: A small positive tolerance on the end-effector linear position error. The returned joint
variables must give an end-effector position error less than εν .

Output:
thetalist: Joint variables that achieve T within the specified tolerances.

success: A logical value where TRUE means that the function found a solution and FALSE means
that it ran through the set number of maximum iterations without finding a solution within
the tolerances εω and εν .

The algorithm uses an iterative Newton-Raphson root-finding method starting from the initial guess
thetalist0. The algorithm terminates when the stopping criteria are met or after a maximum
number of iterations, whichever comes first. The maximum number of iterations has been hardcoded
in as a variable in the function, which can be changed if desired. If the stopping criteria are not
met, the function returns the last calculation of thetalist as well as a FALSE value for the success
variable.

9



[thetalist,success] = IKinSpace(Slist,M,T,thetalist0,eomg,ev)

Equivalent to IKinBody, except the joint screw axes are specified in the space frame.

Chapter 8: Dynamics of Open Chains

This chapter is concerned with calculating and simulating the dynamics of a serial-chain manipu-
lator with dynamics of the form

τ = M(θ)θ̈ + c(θ, θ̇) + g(θ) + JT(θ)Ftip.

adV = ad(V)

Input:
V: A 6-vector (e.g., a twist).

Output:
adV: The corresponding 6× 6 matrix [adV ].

Used to calculate the Lie bracket [adV1 ]V2.

taulist = InverseDynamics(thetalist,dthetalist,ddthetalist,

g,Ftip,Mlist,Glist,Slist)

Input:
thetalist: n-vector of joint variables θ.

dthetalist: n-vector of joint velocities θ̇.

ddthetalist: n-vector of joint accelerations θ̈.

g: Gravity vector g.

Ftip: Wrench Ftip applied by the end-effector expressed in frame {n+ 1}.
Mlist: List of link frames {i} relative to {i− 1} at the home position.

Glist: Spatial inertia matrices Gi of the links.

Slist: Screw axes Si of the joints in a space frame.
Output:

taulist: The n-vector τ of required joint forces/torques.

This function uses forward-backward Newton-Euler iterations.

M = MassMatrix(thetalist,Mlist,Glist,Slist)

Input:
thetalist: n-vector of joint variables θ.

Mlist: List of link frames {i} relative to {i− 1} at the home position.

Glist: Spatial inertia matrices Gi of the links.

Slist: Screw axes Si of the joints in a space frame.

10



Output:
M: The numerical inertia matrix M(θ) of an n-joint serial chain at the given configuration θ.

This function calls InverseDynamics n times, each time passing a θ̈ vector with a single element
equal to one and all other inputs set to zero. Each call of InverseDynamics generates a single
column of the robot’s mass matrix, and these columns are assembled to create the full mass matrix.

c = VelQuadraticForces(thetalist,dthetalist,Mlist,Glist,Slist)

Input:
thetalist: n-vector of joint variables θ.

dthetalist: n-vector of joint velocities θ̇.

Mlist: List of link frames {i} relative to {i− 1} at the home position.

Glist: Spatial inertia matrices Gi of the links.

Slist: Screw axes Si of the joints in a space frame.
Output:

c: The vector c(θ, θ̇) of Coriolis and centripetal terms for a given θ and θ̇.

This function calls InverseDynamics with g = 0, Ftip = 0, and θ̈ = 0.

grav = GravityForces(thetalist,g,Mlist,Glist,Slist)

Input:
thetalist: n-vector of joint variables θ.

g: Gravity vector g.

Mlist: List of link frames {i} relative to {i− 1} at the home position.

Glist: Spatial inertia matrices Gi of the links.

Slist: Screw axes Si of the joints in a space frame.
Output:

grav: The joint forces/torques required to balance gravity at θ.

This function calls InverseDynamics with θ̇ = θ̈ = 0 and Ftip = 0.

JTFtip = EndEffectorForces(thetalist,Ftip,Mlist,Glist,Slist)

Input:
thetalist: n-vector of joint variables θ.

Ftip: Wrench Ftip applied by the end-effector expressed in frame {n+ 1}.
Mlist: List of link frames {i} relative to {i− 1} at the home position.

Glist: Spatial inertia matrices Gi of the links.

Slist: Screw axes Si of the joints in a space frame.
Output:

JTFtip: The joint forces and torques JT(θ)Ftip required to create the end-effector force Ftip.

11



This function calls InverseDynamics with g = 0 and θ̇ = θ̈ = 0.

ddthetalist = ForwardDynamics(thetalist,dthetalist,taulist,

g,Ftip,Mlist,Glist,Slist)

Input:
thetalist: n-vector of joint variables θ.

dthetalist: n-vector of joint velocities θ̇.

taulist: The n-vector τ of required joint forces/torques.

g: Gravity vector g.

Ftip: Wrench Ftip applied by the end-effector expressed in frame {n+ 1}.
Mlist: List of link frames {i} relative to {i− 1} at the home position.

Glist: Spatial inertia matrices Gi of the links.

Slist: Screw axes Si of the joints in a space frame.
Output:

ddthetalist: The resulting joint accelerations θ̈.

This function computes θ̈ by solving

M(θ)θ̈ = τ − c(θ, θ̇)− g(θ)− JT(θ)Ftip.

[thetalistNext,dthetalistNext] = EulerStep(thetalist,dthetalist,ddthetalist,dt)

Input:
thetalist: n-vector of joint variables θ.

dthetalist: n-vector of joint velocities θ̇.

ddthetalist: n-vector of joint accelerations θ̈.

dt: The timestep ∆t.
Output:

thetalistNext: Vector of joint variables θ after ∆t from first-order Euler integration.

dthetalistNext: Vector of joint velocities θ̇ after ∆t from first-order Euler integration.

taumat = InverseDynamicsTrajectory(thetamat,dthetamat,ddthetamat,

g,Ftipmat,Mlist,Glist,Slist)

Input:
thetamat: An N ×n matrix of robot joint variables. Each row is an n-vector of joint variables,

and the N rows correspond to N time instants. (The time instants can be thought of as
starting at time 0 and ending at time Tf , in increments ∆t = Tf/(N − 1).)

dthetamat: An N × n matrix of robot joint velocities.

12



ddthetamat: An N × n matrix of robot joint accelerations.

g: Gravity vector g.

Ftipmat: An N × 6 matrix, where each row is a vector of the form Ftip(k∆t). (If there are no
tip forces the user should input a zero and a zero matrix will be used).

Mlist: List of link frames {i} relative to {i− 1} at the home position.

Glist: Spatial inertia matrices Gi of the links.

Slist: Screw axes Si of the joints in a space frame.
Output:

taumat: The N × n matrix of joint forces/torques for the specified trajectory, where each of
the N rows is the vector of joint forces/torques at each time step.

This function uses InverseDynamics to calculate the joint forces/torques required to move the
serial chain along the given trajectory.

[thetamat,dthetamat] = ForwardDynamicsTrajectory(thetalist,dthetalist,taumat,

g,Ftipmat,Mlist,Glist,Slist,dt,intRes)

Input:
thetalist: n-vector of initial joint variables.

dthetalist: n-vector of initial joint velocities.

taumat: An N × n matrix of joint forces/torques, where each row is the joint force/torque at
any instant. The time corresponding to row k is k∆t, k ∈ {0, . . . , N − 1}, where ∆t is
defined below.

g: Gravity vector g.

Ftipmat: An N × 6 matrix, where each row is a vector of the form Ftip(k∆t). (If there are no
tip forces the user should input a zero and a zero matrix will be used).

Mlist: List of link frames {i} relative to {i− 1} at the home position.

Glist: Spatial inertia matrices Gi of the links.

Slist: Screw axes Si of the joints in a space frame.

dt: The timestep ∆t between consecutive joint forces/torques.

intRes: This input must be an integer greater than or equal to 1. intRes is the number of
Euler integration steps during each timestep ∆t. Larger values result in slower simulations
but less accumulation of integration error.

Output:
thetamat: TheN×nmatrix of robot joint variables resulting from the specified joint forces/torques.

dthetamat: The N × n matrix of robot joint velocities resulting from the specified joint
forces/torques.

This function simulates the motion of a serial chain given an open-loop history of joint forces/torques.
It calls a numerical integration procedure that uses ForwardDynamics.

Chapter 9: Trajectory Generation

s = CubicTimeScaling(Tf,t)

Input:

13



Tf: Total time of the motion Tf in seconds from rest to rest.

t: The current time t satisfying 0 ≤ t ≤ Tf .
Output:

s: The path parameter s(t) corresponding to a third-order polynomial motion that begins (at
s(0) = 0) and ends (at s(Tf ) = 1) at zero velocity.

s = QuinticTimeScaling(Tf,t)

Input:
Tf: Total time of the motion Tf in seconds from rest to rest.

t: The current time t satisfying 0 ≤ t ≤ Tf .
Output:

s: The path parameter s(t) corresponding to a fifth-order polynomial motion that begins (at
s(0) = 0) and ends (at s(Tf ) = 1) at zero velocity and zero acceleration.

traj = JointTrajectory(thetastart,thetaend,Tf,N,method)

Input:
thetastart: The initial joint variables θstart ∈ Rn.

thetaend: The final joint variables θend.

Tf: Total time of the motion Tf in seconds from rest to rest.

N: The number of points N ≥ 2 in the discrete representation of the trajectory.

method: The time-scaling method, where 3 indicates cubic (third-order polynomial) time scaling
and 5 indicates quintic (fifth-order polynomial) time scaling.

Output:
traj: A trajectory as an N × n matrix, where each row is an n-vector of joint variables at an

instant in time. The first row is θstart and the Nth row is θend. The elapsed time between
each row is Tf/(N − 1).

The returned trajectory is a straight-line motion in joint space.

traj = ScrewTrajectory(Xstart,Xend,Tf,N,method)

Input:
Xstart: The initial end-effector configuration Xstart ∈ SE(3).

Xend: The final end-effector configuration Xend.

Tf: Total time of the motion Tf in seconds from rest to rest.

N: The number of points N ≥ 2 in the discrete representation of the trajectory.

method: The time-scaling method, where 3 indicates cubic (third-order polynomial) time scaling
and 5 indicates quintic (fifth-order polynomial) time scaling.

Output:
traj: The discretized trajectory as a list of N matrices in SE(3) separated in time by Tf/(N−

1). The first in the list is Xstart and the Nth is Xend.

14



This function calculates a trajectory corresponding to a screw motion about a constant screw axis.

traj = CartesianTrajectory(Xstart,Xend,Tf,N,method)

Input:
Xstart: The initial end-effector configuration Xstart ∈ SE(3).

Xend: The final end-effector configuration Xend.

Tf: Total time of the motion Tf in seconds from rest to rest.

N: The number of points N ≥ 2 in the discrete representation of the trajectory.

method: The time-scaling method, where 3 indicates cubic (third-order polynomial) time scaling
and 5 indicates quintic (fifth-order polynomial) time scaling.

Output:
traj: The discretized trajectory as a list of N matrices in SE(3) separated in time by Tf/(N−

1). The first in the list is Xstart and the Nth is Xend.

Similar to ScrewTrajectory, except the origin of the end-effector frame follows a straight line,
decoupled from the rotational motion.

Chapter 11: Robot Control

The two functions in this chapter focus on the use of the computed torque controller

τ = M̂(θ)

(
θ̈d +Kpθe +Ki

∫
θe(t)dt+Kdθ̇e

)
+ ĥ(θ, θ̇)

to control the motion of a serial chain in free space. The term ĥ(θ, θ̇) comprises the model of

centripetal, Coriolis, and gravitational forces, and the term M̂(θ) is the model of the robot’s mass
matrix.

taulist = ComputedTorque(thetalist,dthetalist,eint,g,

Mlist,Glist,Slist,thetalistd,dthetalistd,ddthetalistd,Kp,Ki,Kd)

Input:
thetalist: n-vector of initial joint variables.

dthetalist: n-vector of initial joint velocities.

eint: An n-vector of the time-integral of joint errors.

g: Gravity vector g.

Mlist: List of link frames {i} relative to {i− 1} at the home position.

Glist: Spatial inertia matrices Gi of the links.

Slist: Screw axes Si of the joints in a space frame.

thetalistd: n-vector of reference joint variables θd.

dthetalistd: n-vector of reference joint velocities θ̇d.

ddthetalistd: n-vector of reference joint accelerations θ̈d.

15



Kp: The feedback proportional gain (identical for each joint).

Ki: The feedback integral gain (identical for each joint).

Kd: The feedback derivative gain (identical for each joint).
Output:

taulist: The vector of joint forces/torques computed by the computed torque controller at
the current instant.

[taumat,thetamat] = SimulateControl(thetalist,dthetalist,g,Ftipmat,Mlist,Glist,

Slist,thetamatd,dthetamatd,ddthetamatd,gtilde,Mtildelist,

Gtildelist,Kp,Ki,Kd,dt,intRes)

Input:
thetalist: n-vector of initial joint variables.

dthetalist: n-vector of initial joint velocities.

g: Actual gravity vector g.

Ftipmat: An N × 6 matrix, where each row is a vector of the form Ftip(k∆t). (If there are no
tip forces the user should input a zero and a zero matrix will be used).

Mlist: Actual list of link frames {i} relative to {i− 1} at the home position.

Glist: Actual spatial inertia matrices Gi of the links.

Slist: Screw axes Si of the joints in a space frame.

thetamatd: An N × n matrix of desired joint variables θd from the reference trajectory. The
first row is the initial desired joint configuration, and the Nth row is the final desired joint
configuration. The time between each row is dt, below.

dthetamatd: An N × n matrix of desired joint velocities θ̇d.

ddthetamatd: An N × n matrix of desired joint accelerations θ̈d.

gtilde: The (possibly incorrect) model of the gravity vector.

Mtildelist: The (possibly incorrect) model of the link frame locations.

Gtildelist: The (possibly incorrect) model of the link spatial inertias.

Kp: The feedback proportional gain (identical for each joint).

Ki: The feedback integral gain (identical for each joint).

Kd: The feedback derivative gain (identical for each joint).

dt: The timestep ∆t between points on the reference trajectory.

intRes: This input must be an integer greater than or equal to 1. intRes is the number of
Euler integration steps during each timestep ∆t. Larger values result in slower simulations
but less accumulation of integration error.

Output:
taumat: An N × n matrix of the controller’s commanded joint forces/torques, where each row

of n forces/torques corresponds to a single time instant.

thetamat: An N × n matrix of actual joint variables, to be compared to thetamatd.

Plot: Plot of actual and desired joint variables.

This function uses ComputedTorque, ForwardDynamics, and numerical integration to simulate the
performance of a computed torque control law operating on a serial chain. Disturbances come in
the form of initial position and velocity errors; incorrect models of gravity, the locations of the
link center of mass frames, and the link spatial inertias; and errors introduced by the numerical
integration.

16


